
CSCI 210: Computer Architecture

Lecture 31: Data Hazards

Stephen Checkoway

Oberlin College

May 9, 2022

Slides from Cynthia Taylor

Announcements

• Problem Set 10 due Friday

• Lab 8 due Sunday, May 15

• Office Hours tomorrow 13:30–14:30

Data Hazards in ALU Instructions

• Consider this sequence:

sub $2, $1,$3

and $12,$2,$5

or $13,$6,$2

add $14,$2,$2

sw $15,100($2)

• We can resolve hazards with forwarding

– How do we detect when to forward?

Forwarding

Datapath

• Connect the outputs of EX and MEM stages to both ALU inputs

controlled by muxes

Control path

• Pass rs, rt, and rd register numbers through the pipeline

registers

• Add a forwarding unit to control the muxes

– Depends on RegWrite and rs/rt/rd from various stages

Detecting the Need to Forward

• Data hazards when

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

Detecting the Need to Forward

• But only if forwarding instruction will write to a register!

– EX/MEM.RegWrite, MEM/WB.RegWrite

• And only if Rd for that instruction is not $zero

– EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Forwarding Paths

If EX/MEM.RegisterRd = MEM/WB.RegisterRd = rs (i.e., both

pipeline registers contain a value that will be written to the same

register that’s about to be used for the ALU), which value should

be used by the ALU?

A. The one in EX/MEM

B. The one in MEM/WB

C. Either works since

both write to rs

D. The rs value from the

register file

Datapath with Forwarding

Load-Use Data Hazard

We can BEST solve these data hazards

A. By stalling.

B. By forwarding.

C. By combining forwards and

stalls.

D. By doing something else.

Load-Use Data Hazard

Need to stall

for one cycle

How to Stall the Pipeline

• Detect hazard in ID stage using Hazard detection unit

– Check if instruction in EX stage is load with destination rs or rt

• Force control values in ID/EX register
to 0

– EX, MEM and WB do nop (no-operation)

• Prevent update of PC and IF/ID register

– Instruction with dependency is decoded again

– Following instruction is fetched again

– 1-cycle stall allows MEM to read data for lw
• Can subsequently forward to EX stage

Stall/Bubble in the Pipeline

Stall inserted

here

Stall/Bubble in the Pipeline

Or, more

accurately…

After we add the stall

A. Everything works with our

existing forwarding

B. We need to forward between

the register files to solve the 2nd

hazard

C. We need to do something else

Datapath with Hazard Detection

Consider the code

addi $s0, $s0, 4

lw $t0, 0($s0)

sub $t1, $t2, $t2

add $t0, $t0, $t1

Does this code require a forward, a stall, both, or neither?

A. Forward

B. Stall

C. Both

D. Neither

Stalls and Performance

• Stalls reduce performance

– But are required to get correct results

• Compiler can arrange code to avoid hazards and stalls

– Requires knowledge of the pipeline structure

– Different microarchitectures (variants of the same underlying

architecture) can have vastly different pipelines

– Compilers have to pick one to target

Reading

• Next lecture: Control Hazards

– Section 5.9

• Problem Set 10 due Friday

• Lab 8 due Monday

